If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2+3x-99=0
a = 3; b = 3; c = -99;
Δ = b2-4ac
Δ = 32-4·3·(-99)
Δ = 1197
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1197}=\sqrt{9*133}=\sqrt{9}*\sqrt{133}=3\sqrt{133}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-3\sqrt{133}}{2*3}=\frac{-3-3\sqrt{133}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+3\sqrt{133}}{2*3}=\frac{-3+3\sqrt{133}}{6} $
| 4x+6+5x=337 | | 5.04-x=-3.61 | | 5t-2t{t-5}=19 | | t-3(+4/3=2t+3 | | 5x+7=9x-10 | | 11x/18+2/9=5x/9 | | 2g+2=17 | | 11x/18-2/9=5x/9 | | 2(8x-1)+7(x+5=-59 | | 0=-16t^2+77t+.75 | | x2+5x=234 | | (x/7)-4=-8 | | 34-5(n-1)=4 | | -16b^2+14=0 | | 9x+6/3=1 | | 2q+3=13 | | 3(4x-2)-(-2x+9)=x-7(-5-x) | | 25+3x=5.50 | | (5x-3)(3x+1)=0 | | −6(9−w)=2(3w−7) | | 12/6=60/x | | 34(n-1)=4 | | -4.9t^2+12t=7.35 | | 7w−(2+w)=2(3w−1) | | 1/4x+3/5+2=53/5 | | x/4+x/9=9/8 | | 6z^2-14z=-10z-4 | | 4-2d/5+3=9 | | 105=-31.75n+1.75n^2 | | 37(n-1)=4 | | 3/5(b-7)=1 | | C=15n+84 |